Introduction to Data Mining, Second Edition

Introduction to Data Mining, Second Edition pdf epub mobi txt 电子书 下载 2025

出版者:Pearson
作者:Pang-Ning Tan
出品人:
页数:864
译者:
出版时间:2018-1-4
价格:USD 126.65
装帧:Hardcover
isbn号码:9780133128901
丛书系列:
图书标签:
  • 数据挖掘
  • 机器学习
  • 数据科学
  • Data_Science
  • 计算机科学
  • 英文原版
  • 数据分析
  • USC567
  • 数据挖掘
  • 机器学习
  • 数据分析
  • 算法
  • 统计学
  • 数据库
  • 人工智能
  • 模式识别
  • 商业智能
  • 数据科学
想要找书就要到 图书目录大全
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

Introduction to Data Mining, 2nd Edition, gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps readers understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth.

作者简介

Dr Pang-Ning Tan is a Professor in the Department of Computer Science and Engineering at Michigan State University. He received his M.S. degree in Physics and Ph.D. degree in Computer Science from University of Minnesota. His research interests focus on the development of novel data mining algorithms for a broad range of applications, including climate and ecological sciences, cybersecurity, and network analysis. He has published more than 130 technical papers in the area of data mining, including top conferences and journals such as KDD, ICDM, SDM, CIKM, and TKDE.

Dr. Michael Steinbach is a Research Scientist in the department of Computer Science and Engineering at the University of Minnesota, from which he earned a B.S. degree in Mathematics, an M.S. degree in Statistics, and M.S. and Ph.D. degrees in Computer Science. His research interests are in the areas of data mining, machine learning, and statistical learning and its applications to fields, such as climate, biology, and medicine. This research has resulted in more than 100 papers published in the proceedings of major data mining conferences or computer science or domain journals. Previous to his academic career, he held a variety of software engineering, analysis, and design positions in industry at Silicon Biology, Racotek, and NCR.

Dr. Anuj Karpatne is a Post Doctoral Associate in the Department of Computer Science and Engineering at the University of Minnesota. He received his M.Tech in Mathematics and Computing from the Indian Institute of Technology Delhi, and a Ph.D. in Computer Science at the University of Minnesota under the guidance of Prof. Vipin Kumar. His research interests lie in the development of data mining and machine learning algorithms for solving scientific and socially relevant problems in varied disciplines such as climate science, hydrology, and healthcare. His research has been published at top-tier journals and conferences such as SDM, ICDM, KDD, NIPS, TKDE, and ACM Computing Surveys.

目录信息

读后感

评分

作为数据挖掘导论,这本书基本上已经做到了。书中介绍了很多数据挖掘方面相关的概念和方法,对于入门来讲是很友好的。因为刚刚看完机器学习的书,所以前半部分基本不需要看了。后面的关联分析和聚类方法还是可以一看的。虽然这本书没有实际操作的内容,但是让人大概了解了数据...  

评分

主要是一些理论的讲解,对数据挖掘的总体起一个概述的作用,偏向于实际应用的较少!对各种算法也只是简单进行说明,然后进行应用,对于刚刚接触数据挖掘的同学有一些意义 内容涵盖方方面面,对于要深挖某个主题的话需要另找书籍结合阅读  

评分

看我截图吧 http://weibo.com/1677386655/zu8O4ci9O therefore, if we compute the k-dist for all the data points for some k, sort them in increasing order, and ther plot the sorted values, we expect to see a sharp change at the value of k-dist that correspon...  

评分

评分

The book is used as a textbook for my data mining class. It covers all fundamental theories and concepts of data mining, and it explained everything in a quite easy-to-understand and detailed manner. It is suggested to have a good comprehension of some math...  

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有