Dr Pang-Ning Tan is a Professor in the Department of Computer Science and Engineering at Michigan State University. He received his M.S. degree in Physics and Ph.D. degree in Computer Science from University of Minnesota. His research interests focus on the development of novel data mining algorithms for a broad range of applications, including climate and ecological sciences, cybersecurity, and network analysis. He has published more than 130 technical papers in the area of data mining, including top conferences and journals such as KDD, ICDM, SDM, CIKM, and TKDE.
Dr. Michael Steinbach is a Research Scientist in the department of Computer Science and Engineering at the University of Minnesota, from which he earned a B.S. degree in Mathematics, an M.S. degree in Statistics, and M.S. and Ph.D. degrees in Computer Science. His research interests are in the areas of data mining, machine learning, and statistical learning and its applications to fields, such as climate, biology, and medicine. This research has resulted in more than 100 papers published in the proceedings of major data mining conferences or computer science or domain journals. Previous to his academic career, he held a variety of software engineering, analysis, and design positions in industry at Silicon Biology, Racotek, and NCR.
Dr. Anuj Karpatne is a Post Doctoral Associate in the Department of Computer Science and Engineering at the University of Minnesota. He received his M.Tech in Mathematics and Computing from the Indian Institute of Technology Delhi, and a Ph.D. in Computer Science at the University of Minnesota under the guidance of Prof. Vipin Kumar. His research interests lie in the development of data mining and machine learning algorithms for solving scientific and socially relevant problems in varied disciplines such as climate science, hydrology, and healthcare. His research has been published at top-tier journals and conferences such as SDM, ICDM, KDD, NIPS, TKDE, and ACM Computing Surveys.
Introduction to Data Mining, 2nd Edition, gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps readers understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth.
给出了DataMining的一般性解决思路,全面易懂,很适合给初学者扫盲。加之与原版大概400+RMB比较起来,不禁觉得还是祖国好哇。。。PS:据说巴基斯坦卖得更便宜。。。
评分统计学经典入门书籍,对数据处理、分类、相关分析、聚类等方面做了事无巨细的讲解,兼顾通俗性和理论推导,浏览一遍目录就会发现,这不就是机器学习嘛! 看这书名一开始以为这只是一本讲数据抓取、数据分析的书籍,这比市面上一些夸夸其谈机器学习、人工智能的书要低调很多,而...
评分这本书介绍的比较全面,某些内容在一般的书中是很少介绍的,内容浅显易懂。本人开始看中文版的,觉的中文版的写的不错,后来又看英文版的,就发现中文版的差太多了,推荐英文版的
评分它是我关于数据挖掘这一方向的入门书。 书中讲了很多基础的数据挖掘算法,读完以后可以对这些算法的基本思想有个了解。书中的例子也很详尽,还是不错的。 但是研究生期间是指望发论文的,这些算法从学术上来说,只能算基础入门了。至于它们在实际工业应...
评分作为数据挖掘导论,这本书基本上已经做到了。书中介绍了很多数据挖掘方面相关的概念和方法,对于入门来讲是很友好的。因为刚刚看完机器学习的书,所以前半部分基本不需要看了。后面的关联分析和聚类方法还是可以一看的。虽然这本书没有实际操作的内容,但是让人大概了解了数据...
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有