Introduction to Data Mining, Second Edition

Introduction to Data Mining, Second Edition pdf epub mobi txt 电子书 下载 2025

Dr Pang-Ning Tan is a Professor in the Department of Computer Science and Engineering at Michigan State University. He received his M.S. degree in Physics and Ph.D. degree in Computer Science from University of Minnesota. His research interests focus on the development of novel data mining algorithms for a broad range of applications, including climate and ecological sciences, cybersecurity, and network analysis. He has published more than 130 technical papers in the area of data mining, including top conferences and journals such as KDD, ICDM, SDM, CIKM, and TKDE.

Dr. Michael Steinbach is a Research Scientist in the department of Computer Science and Engineering at the University of Minnesota, from which he earned a B.S. degree in Mathematics, an M.S. degree in Statistics, and M.S. and Ph.D. degrees in Computer Science. His research interests are in the areas of data mining, machine learning, and statistical learning and its applications to fields, such as climate, biology, and medicine. This research has resulted in more than 100 papers published in the proceedings of major data mining conferences or computer science or domain journals. Previous to his academic career, he held a variety of software engineering, analysis, and design positions in industry at Silicon Biology, Racotek, and NCR.

Dr. Anuj Karpatne is a Post Doctoral Associate in the Department of Computer Science and Engineering at the University of Minnesota. He received his M.Tech in Mathematics and Computing from the Indian Institute of Technology Delhi, and a Ph.D. in Computer Science at the University of Minnesota under the guidance of Prof. Vipin Kumar. His research interests lie in the development of data mining and machine learning algorithms for solving scientific and socially relevant problems in varied disciplines such as climate science, hydrology, and healthcare. His research has been published at top-tier journals and conferences such as SDM, ICDM, KDD, NIPS, TKDE, and ACM Computing Surveys.

出版者:Pearson
作者:Pang-Ning Tan
出品人:
页数:864
译者:
出版时间:2018-1-4
价格:USD 126.65
装帧:Hardcover
isbn号码:9780133128901
丛书系列:
图书标签:
  • 数据挖掘 
  • 机器学习 
  • 数据科学 
  • Data_Science 
  • 计算机科学 
  • 英文原版 
  • 数据分析 
  • USC567 
  •  
想要找书就要到 图书目录大全
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

Introduction to Data Mining, 2nd Edition, gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps readers understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth.

具体描述

读后感

评分

屎一样狗屁不通的翻译。 原文: As a result, Z is as likely to be chosen for splitting as the interacting but useful attributes, X and Y. 译文:因此,Z 可能被选作划分有相互作用但有效的属性 X 和 Y。 还有其他很多地方就不一一列举了,本来作为入门读物,很多东西就...  

评分

作为数据挖掘导论,这本书基本上已经做到了。书中介绍了很多数据挖掘方面相关的概念和方法,对于入门来讲是很友好的。因为刚刚看完机器学习的书,所以前半部分基本不需要看了。后面的关联分析和聚类方法还是可以一看的。虽然这本书没有实际操作的内容,但是让人大概了解了数据...  

评分

给出了DataMining的一般性解决思路,全面易懂,很适合给初学者扫盲。加之与原版大概400+RMB比较起来,不禁觉得还是祖国好哇。。。PS:据说巴基斯坦卖得更便宜。。。

评分

我是拿这本书当作课程书的,这本书基本上涵盖了数据挖掘的许多经典算法,分类,聚类,关联规则。比较适合对数据挖掘感兴趣的人,这本书看完之后基本上就可以进行对数据的分析,挖掘了。然而这仅仅是一门入门书,对于理论部分并没有做过多的解释。如果想进一步的了解理论知识,...  

评分

我是拿这本书当作课程书的,这本书基本上涵盖了数据挖掘的许多经典算法,分类,聚类,关联规则。比较适合对数据挖掘感兴趣的人,这本书看完之后基本上就可以进行对数据的分析,挖掘了。然而这仅仅是一门入门书,对于理论部分并没有做过多的解释。如果想进一步的了解理论知识,...  

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有