Because enzyme-catalyzed reactions exhibit higher enantioselectivity, regioselectivity, substrate specificity, and stability, they require mild conditions to react while prompting higher reaction efficiency and product yields. Biocatalysis in the Pharmaceutical and Biotechnology Industries examines the use of catalysts to produce fine chemicals and chiral intermediates in a variety of pharmaceutical, agrochemical, and other biotechnological applications. Written by internationally recognized scientists in biocatalysis, the authors analyze the synthesis of chiral intermediates for over 60 brand-name pharmaceuticals for a wide range of drug therapies and treatments. From starting material to product, the chapters offer detailed mechanisms that show chiral intermediates and other by-products for each reaction-including hydrolytic, acylation, halogenation, esterification, dehalogenation, oxidation-reduction, oxygenation, hydroxylation, deamination, transamination, and C-C, C-N, C-O bonds formation. Cutting-edge topics include advanced methodologies for gene shuffling and directed evolution of biocatalysts; the custom engineering of enzymes; the use of microbial cells and isolated biocatalysts; the use of renewable starting materials; and generating novel molecules by combinatorial biocatalysis and high-throughput screening. Focusing on industrial applications, the book also considers factors such as bulk processes, instrumentation, solvent selection, and techniques for catalyst immobilization, reusability, and yield optimization throughout. Biocatalysis in the Pharmaceutical and Biotechnology Industries showcases the practical advantages and methodologies for using biocatalysts to develop and produce chiral pharmaceuticals and fine chemicals.
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有