Two features of Processing Random Data differentiate it from other similar books: the focus on computing the reproducibility error for statistical measurements, and its comprehensive coverage of Maximum Likelihood parameter estimation techniques. The book is useful for dealing with situations where there is a model relating to the input and output of a process, but with a random component, which could be noise in the system or the process itself could be random, like turbulence. Parameter estimation techniques are shown for many different types of statistical models, including joint Gaussian. The Cramer?Rao bounds are described as useful estimates of reproducibility errors. Finally, using an example with a random sampling of turbulent flows that can occur when using laser anemometry the book also explains the use of conditional probabilities.
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有