Learn how to develop models for classification, prediction, and customer segmentation with the help of "Data Mining for Business Intelligence". In today's world, businesses are becoming more capable of accessing their ideal consumers, and an understanding of data mining contributes to this success. "Data Mining for Business Intelligence", which was developed from a course taught at the Massachusetts Institute of Technology's Sloan School of Management, and the University of Maryland's Smith School of Business, uses real data and actual cases to illustrate the applicability of data mining intelligence to the development of successful business models. Featuring XLMiner, the Microsoft Office Excel add-in, this book allows readers to follow along and implement algorithms at their own speed, with a minimal learning curve. In addition, students and practitioners of data mining techniques are presented with hands-on, business-oriented applications. An abundant amount of exercises and examples are provided to motivate learning and understanding. "Data Mining for Business Intelligence" provides both a theoretical and practical understanding of the key methods of classification, prediction, reduction, exploration, and affinity analysis. It features a business decision-making context for these key methods. It illustrates the application and interpretation of these methods using real business cases and data. This book helps readers understand the beneficial relationship that can be established between data mining and smart business practices, and is an excellent learning tool for creating valuable strategies and making wiser business decisions.
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有