This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn Schur theorem on the equivalence of weak and norm convergent series in ι 1 are also developed for multiplier convergent series. Finally, the notion of multiplier convergent series is extended to operator-valued series and vector-valued multipliers.
Contents:Basic Properties of Multiplier Convergent Series; Applications of Multiplier Convergent Series; The Orlicz Pettis Theorem; Orlicz-Pettis Theorems for Strong Topology; Orlicz Pettis Theorems for Linear Operators; The Hahn Schur Theorem; Spaces of Multiplier Convergent Series and Multipliers; The Antosik Interchange Theorem; Automatic Continuity of Matrix Mappings; Operator-Valued Series and Vector-Valued Multipliers; Orlicz Pettis Theorems for Operator-Valued Series; Hahn Schur Theorems for Operator-Valued Series; Automatic Continuity for Operator-Valued Matrices.
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有