This original text for courses in differential geometry is geared toward advanced undergraduate and graduate majors in math and physics. Based on an advanced class taught by a world-renowned mathematician for more than fifty years, the treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool.
Starting with an introduction to the various curvatures associated to a hypersurface embedded in Euclidean space, the text advances to a brief review of the differential and integral calculus on manifolds. A discussion of the fundamental notions of linear connections and their curvatures follows, along with considerations of Levi-Civita's theorem, bi-invariant metrics on a Lie group, Cartan calculations, Gauss's lemma, and variational formulas. Additional topics include the Hopf-Rinow, Myer's, and Frobenius theorems; special and general relativity; connections on principal and associated bundles; the star operator; superconnections; semi-Riemannian submersions; and Petrov types. Prerequisites include linear algebra and advanced calculus, preferably in the language of differential forms.
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有