A COURSE IN MONTE CARLO is a concise explanation of the Monte Carlo (MC) method. In addition to providing guidance for generating samples from diverse distributions, it describes how to design, perform, and analyze the results of MC experiments based on independent replications, Markov chain MC, and MC optimization. The text gives considerable emphasis to the variance-reducing techniques of importance sampling, stratified sampling, Rao-Blackwellization, control variates, antithetic variates, and quasi-random numbers. For solving optimization problems it describes several MC techniques, including simulated annealing, simulated tempering, swapping, stochastic tunneling, and genetic algorithms. Examples from many areas show how these techniques perform in practice. Hands-on exercises enable student to experience challenges encountered when solving real problems. An answer key to selected problems is included.
評分
評分
評分
評分
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈圖書下載中心 版权所有