Computer Age Statistical Inference 在線電子書 圖書標籤: 統計學 統計 數據科學 計算機 statistics Statistics 算法 統計學
發表於2024-12-22
Computer Age Statistical Inference 在線電子書 pdf 下載 txt下載 epub 下載 mobi 下載 2024
很好,等把每一章的專題學下用下,再來讀第2遍,2017第1本
評分比較吸引我的是對於Fisher和Bayes學派的看法,尤其是以前看到的所有的書都把Fisher當成頻率學派的代言人,這裏的觀點感覺更客觀些。其他的都講得比較泛泛瞭
評分比較吸引我的是對於Fisher和Bayes學派的看法,尤其是以前看到的所有的書都把Fisher當成頻率學派的代言人,這裏的觀點感覺更客觀些。其他的都講得比較泛泛瞭
評分很好,等把每一章的專題學下用下,再來讀第2遍,2017第1本
評分後半本偏嚮於機器學習。全書並不會逐步推導公式,而是從想法和直覺去討論統計方法。章節安排一定程度上根據統計方法齣現的時間先後排列。講述方法的時候進行瞭橫嚮縱嚮的比較,高屋建瓴。作者是bootstrap的發明者之一,采訪中說自己垂垂老矣,決定不寫論文,寫一本書來說明computer age的統計方法。對統計學感興趣的讀者不可錯過。本人閑暇時還復現瞭書中一些圖錶,藉助書中的公式和數據集進行實戰,加深瞭自己對統計方法的理解。
Bradley Efron, Stanford University, California
Bradley Efron is Max H. Stein Professor, Professor of Statistics, and Professor of Biomedical Data Science at Stanford University, California. He has held visiting faculty appointments at Harvard University, Massachusetts, the University of California, Berkeley, and Imperial College of Science, Technology and Medicine, London. Efron has worked extensively on theories of statistical inference, and is the inventor of the bootstrap sampling technique. He received the National Medal of Science in 2005 and the Guy Medal in Gold of the Royal Statistical Society in 2014.
Trevor Hastie, Stanford University, California
Trevor Hastie is John A. Overdeck Professor, Professor of Statistics, and Professor of Biomedical Data Science at Stanford University, California. He is coauthor of Elements of Statistical Learning, a key text in the field of modern data analysis. He is also known for his work on generalized additive models and principal curves, and for his contributions to the R computing environment. Hastie was awarded the Emmanuel and Carol Parzen prize for Statistical Innovation in 2014.
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Clarifies both traditional methods and current, popular algorithms (e.g. neural nets, random forests)
Written by two world-leading researchers
Addressed to all fields that work with data
評分
評分
評分
評分
Computer Age Statistical Inference 在線電子書 pdf 下載 txt下載 epub 下載 mobi 下載 2024