The increasing importance of three-dimensional imaging in medicine leads to a growing demand for volumetric image analysis and automatic segmentation. Due to their robust performance, statistical shape models trained on a collection of example data are especially suited for that purpose. In this book, a three-step procedure for generating these models and employing them for 3D segmentation is presented. The first step is the identification of corresponding landmarks on the example data, required for training the geometric models. The second step consists of modeling the appearance, i.e. gray-value environment, of the object of interest. The final step integrates shape and appearance model into a robust search algorithm to analyze new images. The presented methods were evaluated on three medical applications: segmentation of the liver in CT data, of the lung in MRI data, and of the prostate in ultrasound images. This book is targeted towards graduate students and researchers in biomedical image analysis who want to gain in-depth insight into the field of statistical shape modeling.
評分
評分
評分
評分
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈圖書下載中心 版权所有