The goal of object recognition is to label objects from images and to estimate the poses of the labeled objects. The field of object recognition has seen tremendous progress with successful applications in some specific domains such as face recognition. However, the current state-of-the-art methods show unsatisfactory results for more general object domains in complex natural environments with visual ambiguities. In this dissertation, we aim to enhance the object identification and categorization with the guide of visual context and graphical model. In this work, we propose a general framework for the cooperative object identification and object categorization. Examplars used in identification provide useful information of similarity in categorization. Conversely, novel objects are rejected in identification but the proposed object categorization can label the novel objects and segment them out for database update in identification. This work can be helpful to the engineers in artificial intelligence and machine vision.
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有