The goal of object recognition is to label objects from images and to estimate the poses of the labeled objects. The field of object recognition has seen tremendous progress with successful applications in some specific domains such as face recognition. However, the current state-of-the-art methods show unsatisfactory results for more general object domains in complex natural environments with visual ambiguities. In this dissertation, we aim to enhance the object identification and categorization with the guide of visual context and graphical model. In this work, we propose a general framework for the cooperative object identification and object categorization. Examplars used in identification provide useful information of similarity in categorization. Conversely, novel objects are rejected in identification but the proposed object categorization can label the novel objects and segment them out for database update in identification. This work can be helpful to the engineers in artificial intelligence and machine vision.
評分
評分
評分
評分
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈圖書下載中心 版权所有