Determinantal ideals are ideals generated by minors of a homogeneous polynomial matrix. Some classical ideals that can be generated in this way are the ideal of the Veronese varieties, of the Segre varieties, and of the rational normal scrolls. Determinantal ideals are a central topic in both commutative algebra and algebraic geometry, and they also have numerous connections with invariant theory, representation theory, and combinatorics. Due to their important role, their study has attracted many researchers and has received considerable attention in the literature. In this book three crucial problems are addressed: CI-liaison class and G-liaison class of standard determinantal ideals; the multiplicity conjecture for standard determinantal ideals; and unobstructedness and dimension of families of standard determinantal ideals. Winner of the Ferran Sunyer i Balaguer Prize 2007.
評分
評分
評分
評分
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈圖書下載中心 版权所有