Supertagging 在线电子书 图书标签: 语言学 词汇化 计算语言学 计算机 工具书 TAG NLP
发表于2024-11-27
Supertagging 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024
The last decade has seen computational implementations of large hand-crafted natural language grammars in formal frameworks such as Tree-Adjoining Grammar (TAG), Combinatory Categorical Grammar (CCG), Head-driven Phrase Structure Grammar (HPSG), and Lexical Functional Grammar (LFG). Grammars in these frameworks typically associate linguistically motivated rich descriptions (Supertags) with words. With the availability of parse-annotated corpora, grammars in the TAG and CCG frameworks have also been automatically extracted while maintaining the linguistic relevance of the extracted Supertags. In these frameworks, Supertags are designed so that complex linguistic constraints are localized to operate within the domain of those descriptions. While this localization increases local ambiguity, the process of disambiguation (Supertagging) provides a unique way of combining linguistic and statistical information. This volume investigates the theme of employing statistical approaches with linguistically motivated representations and its impact on Natural Language Processing tasks. In particular, the contributors describe research in which words are associated with Supertags that are the primitives of different grammar formalisms including Lexicalized Tree-Adjoining Grammar (LTAG). ContributorsJens Backer, Srinivas Bangalore, Akshar Bharati, Pierre Boullier, Tomas By, John Chen, Stephen Clark, Berthold Crysmann, James R. Curran, Kilian Foth, Robert Frank, Karin Harbusch, Sa a Hasan, Aravind Joshi,Vincenzo Lombardo, Takuya Matsuzaki, Alessandro Mazzei, Wolfgang Menzel, Yusuke Miyao, Richard Moot, Alexis Nasr, Gunter Neumann, Martha Palmer, Owen Rambow, Rajeev Sangal, Anoop Sarkar, Giorgio Satta, Libin Shen, Patrick Sturt, Jun'ichi Tsujii, K. Vijay-Shanker, Wen Wang, Fei Xia
评分
评分
评分
评分
Supertagging 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024