Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024


Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing)

简体网页||繁体网页
Li Deng 作者
Now Publishers Inc
译者
2014-6-12 出版日期
212 页数
USD 94.05 价格
Paperback
丛书系列
9781601988140 图书编码

Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 图书标签: 深度学习  机器学习  计算机科学  自然语言处理  人工智能  CS  豆瓣  豆列   


喜欢 Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 的读者还喜欢




点击这里下载
    

想要找书就要到 图书目录大全
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-22


Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 epub 下载 mobi 下载 pdf 下载 txt 下载 2024

Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 epub 下载 mobi 下载 pdf 下载 txt 下载 2024

Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024



Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 用户评价

评分

搞语音识别的人写的,书的布局框架多少还是受背景影响,有些地方讲得不深。

评分

搞语音识别的人写的,书的布局框架多少还是受背景影响,有些地方讲得不深。

评分

Review

评分

Review

评分

Review

Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 著者简介

http://research.microsoft.com/en-us/people/deng/


Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 图书目录


Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 pdf 下载 txt下载 epub 下载 mobi 在线电子书下载

Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 图书描述

This book is aimed to provide an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks. The application areas are chosen with the following three criteria: 1) expertise or knowledge of the authors; 2) the application areas that have already been transformed by the successful use of deep learning technology, such as speech recognition and computer vision; and 3) the application areas that have the potential to be impacted significantly by deep learning and that have gained concentrated research efforts, including natural language and text processing, information retrieval, and multimodal information processing empowered by multi-task deep learning.

In Chapter 1, we provide the background of deep learning, as intrinsically connected to the use of multiple layers of nonlinear transformations to derive features from the sensory signals such as speech and visual images. In the most recent literature, deep learning is embodied also as representation learning, which involves a hierarchy of features or concepts where higher-level representations of them are defined from lower-level ones and where the same lower-level representations help to define higher-level ones. In Chapter 2, a brief historical account of deep learning is presented. In particular, selected chronological development of speech recognition is used to illustrate the recent impact of deep learning that has become a dominant technology in speech recognition industry within only a few years since the start of a collaboration between academic and industrial researchers in applying deep learning to speech recognition. In Chapter 3, a three-way classification scheme for a large body of work in deep learning is developed. We classify a growing number of deep learning techniques into unsupervised, supervised, and hybrid categories, and present qualitative descriptions and a literature survey for each category. From Chapter 4 to Chapter 6, we discuss in detail three popular deep networks and related learning methods, one in each category. Chapter 4 is devoted to deep autoencoders as a prominent example of the unsupervised deep learning techniques. Chapter 5 gives a major example in the hybrid deep network category, which is the discriminative feed-forward neural network for supervised learning with many layers initialized using layer-by-layer generative, unsupervised pre-training. In Chapter 6, deep stacking networks and several of the variants are discussed in detail, which exemplify the discriminative or supervised deep learning techniques in the three-way categorization scheme.

In Chapters 7-11, we select a set of typical and successful applications of deep learning in diverse areas of signal and information processing and of applied artificial intelligence. In Chapter 7, we review the applications of deep learning to speech and audio processing, with emphasis on speech recognition organized according to several prominent themes. In Chapters 8, we present recent results of applying deep learning to language modeling and natural language processing. Chapter 9 is devoted to selected applications of deep learning to information retrieval including Web search. In Chapter 10, we cover selected applications of deep learning to image object recognition in computer vision. Selected applications of deep learning to multi-modal processing and multi-task learning are reviewed in Chapter 11. Finally, an epilogue is given in Chapter 12 to summarize what we presented in earlier chapters and to discuss future challenges and directions.

Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 下载 mobi epub pdf txt 在线电子书下载

想要找书就要到 图书目录大全
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 读后感

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024


分享链接





Deep Learning: Methods and Applications (Foundations and Trends(r) in Signal Processing) 在线电子书 相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有