Bayesian Computation with R 在线电子书 图书标签: R Bayesian 贝叶斯 Statistics 统计 R语言 统计学 计算机科学
发表于2024-11-22
Bayesian Computation with R 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024
:无
评分:无
评分相比之下,R可能是最为普及的计算统计语言,这本薄薄的小册子是一个很好的开始。
评分读过前面几章,不是特别好。讲解不如 A First Course in Bayesian Statistical Methods 清楚。
评分读过前面几章,不是特别好。讲解不如 A First Course in Bayesian Statistical Methods 清楚。
There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry.
Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling. Algorithms written in R are used to develop Bayesian tests and assess Bayesian models by use of the posterior predictive distribution. The use of R to interface with WinBUGS, a popular MCMC computing language, is described with several illustrative examples.
This book is a suitable companion book for an introductory course on Bayesian methods. Also the book is valuable to the statistical practitioner who wishes to learn more about the R language and Bayesian methodology. The LearnBayes package, written by the author and available from the CRAN website, contains all of the R functions described in the book.
作者有点强推自己写的R包了,对bayesian的理论思想讲的不够清楚,适合有一定理论基础的同学看,学习如何实现MCMC,推荐先看Bayesian data analysis。 其实bayesian相比frequentist理论上要简单的多,无论是估计,检验,还是回归,无非就是先验,likelihood,后验的套路。
评分作者有点强推自己写的R包了,对bayesian的理论思想讲的不够清楚,适合有一定理论基础的同学看,学习如何实现MCMC,推荐先看Bayesian data analysis。 其实bayesian相比frequentist理论上要简单的多,无论是估计,检验,还是回归,无非就是先验,likelihood,后验的套路。
评分感觉超级好的textbook,虽然一直不习惯R,当时还是把书上的code跑了过半,感觉对理解bayesian超级有帮助。不像其他学科,初学bayesian应该一开始就和computer结合,不然真的很没趣。这本书没太多理论,提供大量操作,循序渐进,由简单到复杂,初学bayesian如果能结合这本书一起...
评分感觉超级好的textbook,虽然一直不习惯R,当时还是把书上的code跑了过半,感觉对理解bayesian超级有帮助。不像其他学科,初学bayesian应该一开始就和computer结合,不然真的很没趣。这本书没太多理论,提供大量操作,循序渐进,由简单到复杂,初学bayesian如果能结合这本书一起...
评分作者有点强推自己写的R包了,对bayesian的理论思想讲的不够清楚,适合有一定理论基础的同学看,学习如何实现MCMC,推荐先看Bayesian data analysis。 其实bayesian相比frequentist理论上要简单的多,无论是估计,检验,还是回归,无非就是先验,likelihood,后验的套路。
Bayesian Computation with R 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024