The subject of this book is analytic geometry, understood as the geometry of analytic sets (or, more generally, analytic spaces), i.e. sets described locally by systems of analytic equations. Though many of the results presented are relatively modern, they are already part of the classical tool-kit of workers in analytic and algebraic geometry and in analysis, for example: the theorems of Chevalley on constructible sets, of Remmert-Stein on removable singularities, of Andreotti-Stoll on the fibres of a finite mapping, and of Andreotti-Salmon on factoriality of the Grassmannian. The chapter on the relationship between analytic and algebraic geometry is particularly illuminating. This book should be regarded as an introduction. Its aim is to familiarize the reader with a basic range of problems, using means as elementary as possible. At the same time, the author's intention is to give the reader accesss to complete proofs without the need to rely on so-called 'well-known' facts. All the necessary properties and theorems have been gathered in the first chapters either with proofs or with references to standard and elementary textbooks.
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有