The computing world today is in the middle of a revolution: mobile clients and cloud computing have emerged as the dominant paradigms driving programming and hardware innovation today. The Fifth Edition of Computer Architecture focuses on this dramatic shift, exploring the ways in which software and technology in the cloud are accessed by cell phones, tablets, laptops, and other mobile computing devices. Each chapter includes two real-world examples, one mobile and one datacenter, to illustrate this revolutionary change. Updated to cover the mobile computing revolution Emphasizes the two most important topics in architecture today: memory hierarchy and parallelism in all its forms. Develops common themes throughout each chapter: power, performance, cost, dependability, protection, programming models, and emerging trends ("What's Next") Includes three review appendices in the printed text. Additional reference appendices are available online. Includes updated Case Studies and completely new exercises.
John L. Hennessy is the president of Stanford University, where he has been a member of the faculty since 1977 in the departments of electrical engineering and computer science. Hennessy is a fellow of the IEEE and the ACM, a member of the National Academy of Engineering, the National Academy of Science, the American Academy of Arts and Sciences, and the Spanish Royal Academy of Engineering. He received the 2001 Eckert-Mauchly Award for his contributions to RISC technology, the 2001 Seymour Cray Computer Engineering Award, and shared the John von Neumann award in 2000 with David Patterson. After completing the project in 1984, he took a one-year leave from the university to co-found MIPS Computer Systems, which developed one of the first commercial RISC microprocessors. After being acquired by Silicon Graphics in 1991, MIPS Technologies became an independent company in 1998, focusing on microprocessors for the embedded marketplace. As of 2004, over 300 million MIPS microprocessors have been shipped in devices ranging from video games and palmtop computers to laser printers and network switches. Hennessy's more recent research at Stanford focuses on the area of designing and exploiting multiprocessors. He helped lead the design of the DASH multiprocessor architecture, the first distributed shared-memory multiprocessors supporting cache coherency, and the basis for several commercial multiprocessor designs, including the Silicon Graphics Origin multiprocessors. Since becoming president of Stanford, revising and updating this text and the more advanced Computer Architecture: A Quantitative Approach has become a primary form of recreation and relaxation.
David A. Patterson was the first in his family to graduate from college (1969 A.B UCLA), and he enjoyed it so much that he didn't stop until a PhD, (1976 UCLA). After 4 years developing a wafer-scale computer at Hughes Aircraft, he joined U.C. Berkeley in 1977. He spent 1979 at DEC working on the VAX minicomputer. He and colleagues later developed the Reduced Instruction Set Computer (RISC). By joining forces with IBM's 801 and Stanford's MIPS projects, RISC became widespread. In 1984 Sun Microsystems recruited him to start the SPARC architecture. In 1987, Patterson and colleagues wondered if tried building dependable storage systems from the new PC disks. This led to the popular Redundant Array of Inexpensive Disks (RAID). He spent 1989 working on the CM-5 supercomputer. Patterson and colleagues later tried building a supercomputer using standard desktop computers and switches. The resulting Network of Workstations (NOW) project led to cluster technology used by many startups. He is now working on the Recovery Oriented Computing (ROC) project. In the past, he served as Chair of Berkeley's CS Division, Chair and CRA. He is currently serving on the IT advisory committee to the U.S. President and has just been elected President of the ACM. All this resulted in 150 papers, 5 books, and the following honors, some shared with friends: election to the National Academy of Engineering; from the University of California: Outstanding Alumnus Award (UCLA Computer Science Department), McEntyre Award for Excellence in Teaching (Berkeley Computer Science), Distinguished Teaching Award (Berkeley); from ACM: fellow, SIGMOD Test of Time Award, Karlstrom Outstanding Educator Award; from IEEE: fellow, Johnson Information Storage Award, Undergraduate Teaching Award, Mulligan Education Medal, and von Neumann Medal.
我个人认为任何一个学计算机的,你可以不把自己的研究方向设在架构,编译器等等,但你必须要懂架构,编译器,操作系统。我个人认为这些东西对于一个CS的人来说不亚于结构,算法,以及标准库的重要。 我一直觉得英文书比中文书好懂,因为中文书喜欢咬文嚼字装专业,也或者是译...
评分北大东门附近交易吧。 第五版,英文版,机械工业出版的,9成新,原价138,80出。 电话:133411267三七 啦啦啊啦啦啦啊啦啦啦啊啦啦啦啊啦 啦啦啊啦啦啦啊啦啦啦啊啦啦啦啊啦啦啦啊啦啦啦啊啦啦啦啊啦啦啦啊啦
评分我个人认为任何一个学计算机的,你可以不把自己的研究方向设在架构,编译器等等,但你必须要懂架构,编译器,操作系统。我个人认为这些东西对于一个CS的人来说不亚于结构,算法,以及标准库的重要。 我一直觉得英文书比中文书好懂,因为中文书喜欢咬文嚼字装专业,也或者是译...
评分书籍说明 计算机体系结构领域最经典著作 两位作者都是该领域的大牛 特别是附录部分,对计算机硬件的基础知识有一个全面介绍 适合基础不好的同学认真阅读(比如我。。。) 阅读建议 计算机体系结构最经典书籍,适合和第四章结合起来阅读 另外: 还是英文原版比较靠谱。。。
评分Bible
评分作为Stanford的校长,Hennessy真是太厉害了。BTW,这本书是在跟Professor David Wentzlaff在Coursera上的Advanced Computer Architecture时读的。对我这种机械电子+流体力学背景的人来说,非常难啃,非常有意思。
评分看了几个介绍都说不适合新手,我这个新手只好硬着头皮逆流而上了。
评分CSAPP进阶,很赞 有深度,有时间把附录材料刷一遍,加油????
评分上课的课本,书是好书,可惜我太菜。以后有时间应该仔细重读。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2026 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有