Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties over arbitrary rings, in particular over non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory.
A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry.
This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties.
The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thélène Peter Swinnerton Dyer and Paul Vojta.
評分
評分
評分
評分
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈圖書下載中心 版权所有