David C. Lay holds a B.A. from Aurora University (Illinois), and an M.A. and Ph.D. from the University of California at Los Angeles. David Lay has been an educator and research mathematician since 1966, mostly at the University of Maryland, College Park. He has also served as a visiting professor at the University of Amsterdam, the Free University in Amsterdam, and the University of Kaiserslautern, Germany. He has published more than 30 research articles on functional analysis and linear algebra. As a founding member of the NSF-sponsored Linear Algebra Curriculum Study Group, David Lay has been a leader in the current movement to modernize the linear algebra curriculum. Lay is also a coauthor of several mathematics texts, including Introduction to Functional Analysis with Angus E. Taylor, Calculus and Its Applications, with L. J. Goldstein and D. I. Schneider, and Linear Algebra Gems–Assets for Undergraduate Mathematics, with D. Carlson, C. R. Johnson, and A. D. Porter. David Lay has received four university awards for teaching excellence, including, in 1996, the title of Distinguished Scholar—Teacher of the University of Maryland. In 1994, he was given one of the Mathematical Association of America’s Awards for Distinguished College or University Teaching of Mathematics. He has been elected by the university students to membership in Alpha Lambda Delta National Scholastic Honor Society and Golden Key National Honor Society. In 1989, Aurora University conferred on him the Outstanding Alumnus award. David Lay is a member of the American Mathematical Society, the Canadian Mathematical Society, the International Linear Algebra Society, the Mathematical Association of America, Sigma Xi, and the Society for Industrial and Applied Mathematics. Since 1992, he has served several terms on the national board of the Association of Christians in the Mathematical Sciences.
Steven R. Lay began his teaching career at Aurora University (Illinois) in 1971, after earning an M.A. and a Ph.D. in mathematics from the University of California at Los Angeles. His career in mathematics was interrupted for eight years while serving as a missionary in Japan. Upon his return to the States in 1998, he joined the mathematics faculty at Lee University (Tennessee) and has been there ever since. Since then he has supported his brother David in refining and expanding the scope of this popular linear algebra text, including writing most of Chapters 8 and 9. Steven is also the author of three college-level mathematics texts: Convex Sets and Their Applications, Analysis with an Introduction to Proof, and Principles of Algebra. In 1985, Steven received the Excellence in Teaching Award at Aurora University. He and David, and their father, Dr. L. Clark Lay, are all distinguished mathematicians, and in 1989 they jointly received the Outstanding Alumnus award from their alma mater, Aurora University. In 2006, Steven was honored to receive the Excellence in Scholarship Award at Lee University. He is a member of the American Mathematical Society, the Mathematics Association of America, and the Association of Christians in the Mathematical Sciences.
Judi J. McDonald joins the authorship team after working closely with David on the fourth edition. She holds a B.Sc. in Mathematics from the University of Alberta, and an M.A. and Ph.D. from the University of Wisconsin. She is currently a professor at Washington State University. She has been an educator and research mathematician since the early 90s. She has more than 35 publications in linear algebra research journals. Several undergraduate and graduate students have written projects or theses on linear algebra under Judi’s supervision. She has also worked with the mathematics outreach project Math Central http://mathcentral.uregina.ca/ and continues to be passionate about mathematics education and outreach. Judi has received three teaching awards: two Inspiring Teaching awards at the University of Regina, and the Thomas Lutz College of Arts and Sciences Teaching Award at Washington State University. She has been an active member of the International Linear Algebra Society and the Association for Women in Mathematics throughout her career and has also been a member of the Canadian Mathematical Society, the American Mathematical Society, the Mathematical Association of America, and the Society for Industrial and Applied Mathematics.
With traditional linear algebra texts, the course is relatively easy for students during the early stages as material is presented in a familiar, concrete setting. However, when abstract concepts are introduced, students often hit a wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations) are not easily understood and require time to assimilate. These concepts are fundamental to the study of linear algebra, so students' understanding of them is vital to mastering the subject. This text makes these concepts more accessible by introducing them early in a familiar, concrete Rn setting, developing them gradually, and returning to them throughout the text so that when they are discussed in the abstract, students are readily able to understand.
在几种线性代数入门教材中我想这是最适合中国普通学生的了,抽象能力好的入门可以看linear algebra done right (修改这一部分,抽象能力好的不应该看linear algebra done right这本,这本其实真不好的,抽象能力好的我推荐gelfand的线性代数学(lecture notes on algebra) 或者...
評分因为是考研学习LA 所以看了全国被普遍采用的那本紫色的同济LA教材,看着看着我发现那本书其实只是一本 线性代数公式大全,言简意赅到一个境界了,不适合我这样的普通智商的学生参读。 后来选择了这本LA&applications 觉得很不错。每章用一个introductory example开头 让人...
評分原书可能是好书,但是中文版翻译真是太烂了,奉劝诸位能看英文版的尽量看英文的。 ps:第二页的“两个线性方程组称为等价的.若它们有相同的解集.”这是高中生的翻译水平么?简直是侮辱高中生。我真的很怀疑这本书的译者怎么有胆量把自己的名字印在书上的,不嫌丢人么?我真的很...
評分一本非常好的线性代数基础书。 从考研以后,那些不常用到的数学知识变开始逐渐淡忘、褪色。最近对机器学习产生了兴趣,因此又重新开始温习线性代数。 这本书的内容跟中国的教材相比,并没有增加多少,甚至有些东西还有欠缺。但是跟国内图书的不同在于,它详细的讲解了每个公式...
評分看过这本书里边矩阵的内容还有矩阵在计算机图形学里边的应用部分之后感觉对于计算机图形学豁然开朗. 我没有很深入的看这本书.只看了一些基本运算和概念,作了一些前面的题目.对于我学计算机技术已经够了.
2019s1: 手裏三本不同的綫代教材,這本最好懂,一周目quiz靠自學第一章拿瞭滿分,通讀一遍拿hd我覺得不是問題。2019年7月3日:考的還是挺好的,但畢竟不是學校推薦教材,學校的課程outline不是按這本教材走的。pro:這本書第五章開篇舉的那個關於貓頭鷹population dynamics的例子。con:關於linear transformation的內容太少。
评分由於時間和精力,隻做瞭PRACTICE PROBLEMS部分,EXERCISES隻挑瞭幾題做。書中的第9章和10章是網絡上的章節,可惜原書並未收錄,所以隻是看看章節名而已。 不過也是從頭到尾翻瞭一遍,這確實是本好書,甩國內絕大部分教材幾條街,至此也是重新學瞭下綫性代數瞭。
评分由於時間和精力,隻做瞭PRACTICE PROBLEMS部分,EXERCISES隻挑瞭幾題做。書中的第9章和10章是網絡上的章節,可惜原書並未收錄,所以隻是看看章節名而已。 不過也是從頭到尾翻瞭一遍,這確實是本好書,甩國內絕大部分教材幾條街,至此也是重新學瞭下綫性代數瞭。
评分內容組織的非常好,難度循序漸進,清晰閤理,同時又有很多實際應用上的例子,讀起來非常的有趣。比國內那些垃圾綫代教材不知道高到哪裏去瞭。
评分前7章打基礎,第8/9/10三個章節需要重點反復讀,當然內容並不基礎。
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈圖書下載中心 版权所有