Foundations of Data Science 在线电子书 图书标签: 机器学习 数据科学 统计学 数学 Data_Science Data_Mining Machine_Learning Clustering
发表于2024-12-24
Foundations of Data Science 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024
Description Contents Resources Courses About the Authors
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
评分
评分
评分
评分
Foundations of Data Science 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024