The Elements of Statistical Learning

The Elements of Statistical Learning pdf epub mobi txt 电子书 下载 2025

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

出版者:Springer
作者:T. Hastie
出品人:
页数:520
译者:
出版时间:2003-07-30
价格:USD 89.95
装帧:Hardcover
isbn号码:9780387952840
丛书系列:
图书标签:
  • 机器学习 
  • 统计学习 
  • 数据挖掘 
  • 统计学 
  • Statistics 
  • 数学 
  • Learning 
  • Data-Mining 
  •  
想要找书就要到 图书目录大全
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

During the past decade there has been an explosion in computation and information technology. With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book descibes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learing (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting--the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful <EM>An Introduction to the Bootstrap</EM>. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

具体描述

读后感

评分

评论最下面的部分Version 1是我开始读这本书的时候写的东西,现在加上点基础部分。 对linear algebra, probability 要有非常强的直观认识,对这两个基础学的非常通透。Linear algebra 有几种常用的分解QR, eigendecomposition, SVD,搞清楚它们的作用和几何意义。Bayesian meth...  

评分

有人给我推荐这本书的时候说,有了这本书,就不再需要其他的机器学习教材了。 入手这本书的接下来两个月,我与教材中艰深的统计推断、矩阵、数值算法、凸优化等数学知识展开艰苦的斗争。于是我明白了何谓”不需要其他的机器学习教材“:准确地说,是其他的教材都不需要了;一本...  

评分

有人给我推荐这本书的时候说,有了这本书,就不再需要其他的机器学习教材了。 入手这本书的接下来两个月,我与教材中艰深的统计推断、矩阵、数值算法、凸优化等数学知识展开艰苦的斗争。于是我明白了何谓”不需要其他的机器学习教材“:准确地说,是其他的教材都不需要了;一本...  

评分

The methodology used in the books are fancy and attractive, yet in terms of rigorous proofs, sometimes the book skip steps and is difficult to follow. ~ Slightly sophisticated for undergraduate students, but in general is a very nice book.

评分

用户评价

评分

1. 一点都不基础 被虐惨了 2. 新手千万不要看 3. 得读好几遍 = =

评分

1. 一点都不基础 被虐惨了 2. 新手千万不要看 3. 得读好几遍 = =

评分

so clear and comprehensive

评分

对象看书引发我的猎奇心理 看了很闹心

评分

1. 一点都不基础 被虐惨了 2. 新手千万不要看 3. 得读好几遍 = =

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有