The Elements of Statistical Learning 在線電子書 圖書標籤: 機器學習 統計學習 數據挖掘 統計學 Statistics 數學 Learning Data-Mining
發表於2025-03-25
The Elements of Statistical Learning 在線電子書 pdf 下載 txt下載 epub 下載 mobi 下載 2025
值得反復研讀。
評分對於每種方法高屋建瓴的介紹很有啓發性
評分感覺比PRML更清晰
評分被稱為工具書之神,被虐慘瞭,完全搞不懂
評分ESL跟PRML側重很不一樣。前者從frequentist的角度,後者從Bayesian的角度。Machine Learning a Prospective Approach則是二者中閤。 感覺ESL講的東西較PRML直覺性強很多。尤其是bayesian的一堆東西全沒法計算,全是approximation,真用到實戰中頭疼得要死。而ESL上的方法多用bootstraping來近似貝葉斯學派的方法,實現簡單太多。(第8章)
Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
During the past decade there has been an explosion in computation and information technology. With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book descibes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learing (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting--the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful <EM>An Introduction to the Bootstrap</EM>. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
非常难,一点都不element,是本百科全书式的读物,如果是初学者,不建议读 很多章节也没有细节,概述性的东西,能看懂几章就很不错了 其实每章都可以写成一本书,都可以做很多篇的论文 全部读懂非常非常难,倒是作为用到哪个部分作为参考资料查查很不错
評分The methodology used in the books are fancy and attractive, yet in terms of rigorous proofs, sometimes the book skip steps and is difficult to follow. ~ Slightly sophisticated for undergraduate students, but in general is a very nice book.
評分https://web.stanford.edu/~hastie/ElemStatLearn/ ==========================================================================================================================================================
評分上半部看得更仔细些,相对来说收获也更多。书的前半部对各种回归说得很多,曾经仅仅了解这些的回归方法的大概思路,但是从本书中更能了解它们的统计意义、本质,有种豁然开朗的感觉:) 只是总的来说还是磕磕巴巴的看了一遍,还得继续仔细研读才好。希望能有更深刻的领悟,目的...
評分读 ESL 快半年了,也读了差不多1/3,写个短评记录一下,等读完的时候再来改吧。然后简单对比下基本常见的机器学习教材。 我本科是学物理的,对于统计甚至概率论可以说是一无所知。入门的时候读的是周志华老师的《机器学习》,不过并没有读完的。一方面在家看书效率太低;另一...
The Elements of Statistical Learning 在線電子書 pdf 下載 txt下載 epub 下載 mobi 下載 2025