Mining of Massive Datasets 在线电子书 图书标签: 数据挖掘 计算机 机器学习 Data Coursera CS 数据分析 软件工程
发表于2025-02-17
Mining of Massive Datasets 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2025
下学期课程参考textbook,听说professor还不错,打算好好学一下这门课
评分内容不错,但作为技术向的书有些浮于表面。
评分下学期课程参考textbook,听说professor还不错,打算好好学一下这门课
评分花费6个月时间,断断续续看完,哈希和近似的想法真是开阔了眼界。第一回看比较急促,此书值得反复看,多实践。
评分勉强一刷吧。到时配合斯坦福的课再过一遍~
Jure Leskovec is Assistant Professor of Computer Science at Stanford University. His research focuses on mining large social and information networks. Problems he investigates are motivated by large scale data, the Web and on-line media. This research has won several awards including a Microsoft Research Faculty Fellowship, the Alfred P. Sloan Fellowship, Okawa Foundation Fellowship, and numerous best paper awards. His research has also been featured in popular press outlets such as the New York Times, the Wall Street Journal, the Washington Post, MIT Technology Review, NBC, BBC, CBC and Wired. Leskovec has also authored the Stanford Network Analysis Platform (SNAP, http://snap.stanford.edu), a general purpose network analysis and graph mining library that easily scales to massive networks with hundreds of millions of nodes and billions of edges. You can follow him on Twitter at @jure.
Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied successfully to even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. Other chapters cover the PageRank idea and related tricks for organizing the Web, the problems of finding frequent itemsets and clustering. This second edition includes new and extended coverage on social networks, machine learning and dimensionality reduction.
从总体安排来看,书的结构还是不错的。没看过英文的,但是中文版的行文真的不好,磕磕绊绊看了一半以后实在是没有兴趣看后面的了。 之前了解的pagerank看了以后了解了,之前不了解的adwords还是不了解,
评分看到好多人说这本书是大纲,是目录,没啥内容,讲的浅。 那就对了。 本书是Stanford CS246课程MMDS使用的讲义,还有配套的Slides和HW,所以观看本书请配套课程进行学习,同时coursera上也有配套的课程。 See more detail: http://www.mmds.org/
评分很差是给中译版的。 本书的中译版是中科院计算所的王斌老师翻译的,但是翻译的很屎。估计王老师拿到英文稿之后就扔给学生去翻译了,看这翻译水平,实在是不敢恭维。 以上纯为发泄心中不满所写。因为我看译者序,说是自己独立翻译,前后持续了七个多月,并历经多次修改。如果...
评分很差是给中译版的。 本书的中译版是中科院计算所的王斌老师翻译的,但是翻译的很屎。估计王老师拿到英文稿之后就扔给学生去翻译了,看这翻译水平,实在是不敢恭维。 以上纯为发泄心中不满所写。因为我看译者序,说是自己独立翻译,前后持续了七个多月,并历经多次修改。如果...
Mining of Massive Datasets 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2025