Reinforcement Learning 在线电子书 图书标签: 强化学习 机器学习 人工智能 RL 计算机科学 数学 MachineLearning 计算机
发表于2024-12-22
Reinforcement Learning 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024
配合cousera上reinforcement learning specialization食用更佳
评分不好读。
评分强化学习必看书,还是草稿的时候从头到尾看了一遍,至少应该再看一遍。
评分看了前两部分
评分强化学习的书不多
Richard S. Sutton is Professor of Computing Science and AITF Chair in Reinforcement Learning and Artificial Intelligence at the University of Alberta, and also Distinguished Research Scientist at DeepMind.
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence.
Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.
Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
可以在线阅读,还不错的 我还没仔细读,先把网址公布出来,大家一起学习 http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
评分可以在线阅读,还不错的 我还没仔细读,先把网址公布出来,大家一起学习 http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
评分可以在线阅读,还不错的 我还没仔细读,先把网址公布出来,大家一起学习 http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
评分可以在线阅读,还不错的 我还没仔细读,先把网址公布出来,大家一起学习 http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
评分可以在线阅读,还不错的 我还没仔细读,先把网址公布出来,大家一起学习 http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
Reinforcement Learning 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024