This book provides a comprehensive account of a key (and perhaps the most important) theory upon which the Taylor-Wiles proof of Fermat's last theorem is based. The book begins with an overview of the theory of automorphic forms on linear algebraic groups and then covers the basic theory and results on elliptic modular forms, including a substantial simplification of the Taylor-Wiles proof by Fujiwara and Diamond. It contains a detailed exposition of the representation theory of profinite groups (including deformation theory), as well as the Euler characteristic formulas of Galois cohomology groups. The final chapter presents a proof of a non-abelian class number formula and includes several new results from the author. The book will be of interest to graduate students and researchers in number theory (including algebraic and analytic number theorists) and arithmetic algebraic geometry.
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有