David C. Lay holds a B.A. from Aurora University (Illinois), and an M.A. and Ph.D. from the University of California at Los Angeles. Lay has been an educator and research mathematician since 1966, mostly at the University of Maryland, College Park. He has also served as a visiting professor at the University of Amsterdam, the Free University in Amsterdam, and the University of Kaiserslautern, Germany. He has over 30 research articles published in functional analysis and linear algebra.
As a founding member of the NSF-sponsored Linear Algebra Curriculum Study Group, Lay has been a leader in the current movement to modernize the linear algebra curriculum. Lay is also co-author of several mathematics texts, including Introduction to Functional Analysis, with Angus E. Taylor, Calculus and Its Applications, with L.J. Goldstein and D.I. Schneider, and Linear Algebra Gems-Assets for Undergraduate Mathematics, with D. Carlson, C.R. Johnson, and A.D. Porter.
Professor Lay has received four university awards for teaching excellence, including, in 1996, the title of Distinguished Scholar-Teacher of the University of Maryland. In 1994, he was given one of the Mathematical Association of America's Awards for Distinguished College or University Teaching of Mathematics. He has been elected by the university students to membership in Alpha Lambda Delta National Scholastic Honor Society and Golden Key National Honor Society. In 1989, Aurora University conferred on him the Outstanding Alumnus award. Lay is a member of the American Mathematical Society, the Canadian Mathematical Society, the International Linear Algebra Society, the Mathematical Association of America, Sigma Xi, and the Society for Industrial and Applied Mathematics. Since 1992, he has served several terms on the national board of the Association of Christians in the Mathematical Sciences.
Linear algebra is relatively easy for students during the early stages of the course, when the material is presented in a familiar, concrete setting. But when abstract concepts are introduced, students often hit a brick wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations), are not easily understood, and require time to assimilate. Since they are fundamental to the study of linear algebra, students' understanding of these concepts is vital to their mastery of the subject. David Lay introduces these concepts early in a familiar, concrete R n setting, develops them gradually, and returns to them again and again throughout the text so that when discussed in the abstract, these concepts are more accessible.
作者在开篇就给了线性代数一个很新奇的定义:“从某种意义上说,线性代数是一门语言,你要像对待外语一样,每天都学。”书中有大量的应用实例,内容结构安排的很好,前几章就引入子空间,向量,线性变换的概念,还介绍了一下线性代数的核心思想和研究内容,而后面几章的内容都...
評分这看起来不是机翻吗?表述方式一毛一样...看的难受不?我是难受死了,原版不折磨人,感觉是不是机械工业出版社的翻译书水平都不大行...还是我买的书就不太好?继续看原版吧,勿喷我,hhh,我只是表达不满,只是我的看法哟.........................................
評分PCA这么重要的东西应该与SVD一样专门写一段,而不是放在“7.5 图像处理和统计学中的应用”底下当成普通例子来写。虽然这里PCA写的是真清晰真透彻,秒杀网上无数介绍。另外,SVD讲的太简略了,看完公式也抓不住本质。最好加入几何理解角度,并谈谈与PCA的异同。
評分看过这本书里边矩阵的内容还有矩阵在计算机图形学里边的应用部分之后感觉对于计算机图形学豁然开朗. 我没有很深入的看这本书.只看了一些基本运算和概念,作了一些前面的题目.对于我学计算机技术已经够了.
評分看过了介绍后,感觉比较适合我。 本书是一本优秀的现代教材,给出最新的线性代数基本介绍和一些有趣应用。
最後一章"Geometry of Vector Space"沒看。 邏輯清晰,語言簡練,注重概念和應用層麵,嚴格的數學推導和證明較少,非常適閤綫性代數入門。每章的課後習題沒有全做,隨機挑選5-10個做瞭下,算是鞏固知識吧。
评分很差的綫代教材 作者敘述方式捉急 把簡單概念說復雜 把需要詳細解釋的東西一筆帶過然後寫個長公式 身邊同學都說這書講的不清楚 沒有Gilbert Strang的書好
评分最後一章"Geometry of Vector Space"沒看。 邏輯清晰,語言簡練,注重概念和應用層麵,嚴格的數學推導和證明較少,非常適閤綫性代數入門。每章的課後習題沒有全做,隨機挑選5-10個做瞭下,算是鞏固知識吧。
评分最煩這種不停更新版本的瞭.....
评分我覺得蠻好的,簡潔又很明白,習題有代錶性。
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈圖書下載中心 版权所有