David C. Lay holds a B.A. from Aurora University (Illinois), and an M.A. and Ph.D. from the University of California at Los Angeles. Lay has been an educator and research mathematician since 1966, mostly at the University of Maryland, College Park. He has also served as a visiting professor at the University of Amsterdam, the Free University in Amsterdam, and the University of Kaiserslautern, Germany. He has over 30 research articles published in functional analysis and linear algebra.
As a founding member of the NSF-sponsored Linear Algebra Curriculum Study Group, Lay has been a leader in the current movement to modernize the linear algebra curriculum. Lay is also co-author of several mathematics texts, including Introduction to Functional Analysis, with Angus E. Taylor, Calculus and Its Applications, with L.J. Goldstein and D.I. Schneider, and Linear Algebra Gems-Assets for Undergraduate Mathematics, with D. Carlson, C.R. Johnson, and A.D. Porter.
Professor Lay has received four university awards for teaching excellence, including, in 1996, the title of Distinguished Scholar-Teacher of the University of Maryland. In 1994, he was given one of the Mathematical Association of America's Awards for Distinguished College or University Teaching of Mathematics. He has been elected by the university students to membership in Alpha Lambda Delta National Scholastic Honor Society and Golden Key National Honor Society. In 1989, Aurora University conferred on him the Outstanding Alumnus award. Lay is a member of the American Mathematical Society, the Canadian Mathematical Society, the International Linear Algebra Society, the Mathematical Association of America, Sigma Xi, and the Society for Industrial and Applied Mathematics. Since 1992, he has served several terms on the national board of the Association of Christians in the Mathematical Sciences.
Linear algebra is relatively easy for students during the early stages of the course, when the material is presented in a familiar, concrete setting. But when abstract concepts are introduced, students often hit a brick wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations), are not easily understood, and require time to assimilate. Since they are fundamental to the study of linear algebra, students' understanding of these concepts is vital to their mastery of the subject. David Lay introduces these concepts early in a familiar, concrete R n setting, develops them gradually, and returns to them again and again throughout the text so that when discussed in the abstract, these concepts are more accessible.
最近想进修一下统计,遇到第一个难关就是线性代数,好多东西都忘得差不多了,只记得某年某月曾算过特征值和特征向量…… 依稀记得当年考研时候用的就是Lay老人家这本书的中文版,但想到自己已经是研究僧了,应该看看原版书了,于是决定厚颜无耻地去爱问上偷书。下...
評分这看起来不是机翻吗?表述方式一毛一样...看的难受不?我是难受死了,原版不折磨人,感觉是不是机械工业出版社的翻译书水平都不大行...还是我买的书就不太好?继续看原版吧,勿喷我,hhh,我只是表达不满,只是我的看法哟.........................................
評分这是我发现的第三本台湾交大的使用教材。。和他们的OCourse相符。。。大家如果觉得看书太腻,就请结合一下台湾的OCourse视频来学吧。 网址:http://ocw.nctu.edu.tw/riki_detail.php?pgid=50&cgid=12 (不好意思,教材是有偏差,不過聽課還是幫助蠻大的,課程的順序也基本一樣)
評分PCA这么重要的东西应该与SVD一样专门写一段,而不是放在“7.5 图像处理和统计学中的应用”底下当成普通例子来写。虽然这里PCA写的是真清晰真透彻,秒杀网上无数介绍。另外,SVD讲的太简略了,看完公式也抓不住本质。最好加入几何理解角度,并谈谈与PCA的异同。
評分比較傳統的綫代書,第一章就基於矩陣的語言係統地介紹瞭大部分綫性代數的核心概念。就是綫性空間那邊有點亂,既然是在第一章基礎上用更抽象的綫性空間的語言進一步介紹綫性代數概念的,不如乾脆先拋開矩陣一會,不要一會矩陣,一會綫性變換的。
评分看瞭一下價錢嚇尿瞭
评分sheer transformation
评分極好的綫性代數入門書
评分比較傳統的綫代書,第一章就基於矩陣的語言係統地介紹瞭大部分綫性代數的核心概念。就是綫性空間那邊有點亂,既然是在第一章基礎上用更抽象的綫性空間的語言進一步介紹綫性代數概念的,不如乾脆先拋開矩陣一會,不要一會矩陣,一會綫性變換的。
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈圖書下載中心 版权所有