Machine Learning in Action 在线电子书 图书标签: 机器学习 MachineLearning 数据挖掘 python 人工智能 Python 计算机科学 算法
发表于2025-01-31
Machine Learning in Action 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2025
读它是为了熟悉Python语言;内容是在不敢恭维。
评分入门好书
评分入门书籍。。超多python代码..
评分读了LR,ada boost,略读了svm,psvm。数学渣子的福音,码农最爱的实例。 虽然大家都说写的不好,不过入个门还是不错。
评分随便翻翻,当复习Python和相关库了。适合初学者。
Peter Harrington holds Bachelors and Masters Degrees in Electrical Engineering. He worked for Intel Corporation for seven years in California and China. Peter holds five US patents and his work has been published in three academic journals. He is currently the chief scientist for Zillabyte Inc. Peter spends his free time competing in programming competitions, and building 3D printers.
It's been said that data is the new "dirt"—the raw material from which and on which you build the structures of the modern world. And like dirt, data can seem like a limitless, undifferentiated mass. The ability to take raw data, access it, filter it, process it, visualize it, understand it, and communicate it to others is possibly the most essential business problem for the coming decades.
"Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. By implementing the core algorithms of statistical data processing, data analysis, and data visualization as reusable computer code, you can scale your capacity for data analysis well beyond the capabilities of individual knowledge workers.
Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, you'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.
As you work through the numerous examples, you'll explore key topics like classification, numeric prediction, and clustering. Along the way, you'll be introduced to important established algorithms, such as Apriori, through which you identify association patterns in large datasets and Adaboost, a meta-algorithm that can increase the efficiency of many machine learning tasks.
Machine Learning這門科學範圍很大,不大可能有一本書能在這個主題面面俱到。初學者需要先了解機器學習的範圍,再比較淺顯的去知道背後的理論基礎,之後再儘可能挖掘每一種算法的形成與直觀意義。在我閱讀過的機器學習書籍中,這本書與O'Reilly的Data Science From Scratch比較...
评分如果你是机器学习的入门者,如果你想快速看到算法的执行效果,那么这本书适合你。 作者把算法的基本原理讲的很清楚,而且代码是完整可执行的。当然,如果你想了解算法背后的数学原理,还需要花时间去复习一下概率论、高等数学和线性代数。 BTW:读者最好有编程经验,有抽象思维。
评分我的学习过程如下,供大家参考: 1、有些python的基础编程能力,如果没有,先花半个小时学习下; 2、数学基本统计基础,如果不懂数学原理,可以先不要去理解数学原理; 3、先上手写下代码,沉浸进入,熟悉了代码流程,再回头去看数据原理,就明白了。 5、一句话,先不求甚解,...
评分机器学习是概率统计的高级应用,数学知识很重要,要先掌握的先修课程有,微积分,线性代数,概率统计,多元微积分,微分方程,离散数学,数值分析,最优化,数学建模,掌握机器学习和深度学习算法,还有熟悉一种编程语言,有了这些基础,才能得心应手,机器学习主要应用在数据...
Machine Learning in Action 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2025