Machine Learning in Action 在线电子书 图书标签: 机器学习 MachineLearning 数据挖掘 python 人工智能 Python 计算机科学 算法
发表于2024-11-21
Machine Learning in Action 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024
Bad Smells in Codes...
评分教你把Thinkers和Doers结合起来。思想与代码并举
评分入门好书
评分入门书籍。。超多python代码..
评分over simplified in maths, you do need refer to other textbooks for get better idea how it works. and too much coding details, I can understand as the author was from CS background, but I think you need read more, beside this is indeed a nice start point.
Peter Harrington holds Bachelors and Masters Degrees in Electrical Engineering. He worked for Intel Corporation for seven years in California and China. Peter holds five US patents and his work has been published in three academic journals. He is currently the chief scientist for Zillabyte Inc. Peter spends his free time competing in programming competitions, and building 3D printers.
It's been said that data is the new "dirt"—the raw material from which and on which you build the structures of the modern world. And like dirt, data can seem like a limitless, undifferentiated mass. The ability to take raw data, access it, filter it, process it, visualize it, understand it, and communicate it to others is possibly the most essential business problem for the coming decades.
"Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. By implementing the core algorithms of statistical data processing, data analysis, and data visualization as reusable computer code, you can scale your capacity for data analysis well beyond the capabilities of individual knowledge workers.
Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, you'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.
As you work through the numerous examples, you'll explore key topics like classification, numeric prediction, and clustering. Along the way, you'll be introduced to important established algorithms, such as Apriori, through which you identify association patterns in large datasets and Adaboost, a meta-algorithm that can increase the efficiency of many machine learning tasks.
人工智能的脉络 机器学习是人工智能的一个分支。 人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。 机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。 从学习方式来讲,机器学习包括...
评分特别适合新手,特别适合新手,特别适合新手。长度适中,举例形象,概念浅显通俗。难得有一个条理清楚 逻辑不迷糊 不堆砌代码打哈哈的书。基于这个理由bonus给五星,以后给别人推荐就这本了。 尤其是前面几章,介绍机器学习的基本概念。作者给我们指明了一个做ML的基本要求:“...
评分机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。 本书第一部分主要介绍机器学习基础,以...
评分 评分客观说,完全不能当入门书。 缺少必要的证明过程,有些甚至连公式都没有。 我觉得既然要学习机器学习,光改改代码完全是不够的,起码还得知道各个算法的基本公式和过程,不幸的是,这本书没有。 就比如逻辑斯蒂回归那章,他连损失函数都没提,就开始说梯度法了。问题是梯度法的...
Machine Learning in Action 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024