Peter Harrington holds Bachelors and Masters Degrees in Electrical Engineering. He worked for Intel Corporation for seven years in California and China. Peter holds five US patents and his work has been published in three academic journals. He is currently the chief scientist for Zillabyte Inc. Peter spends his free time competing in programming competitions, and building 3D printers.
It's been said that data is the new "dirt"—the raw material from which and on which you build the structures of the modern world. And like dirt, data can seem like a limitless, undifferentiated mass. The ability to take raw data, access it, filter it, process it, visualize it, understand it, and communicate it to others is possibly the most essential business problem for the coming decades.
"Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. By implementing the core algorithms of statistical data processing, data analysis, and data visualization as reusable computer code, you can scale your capacity for data analysis well beyond the capabilities of individual knowledge workers.
Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, you'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.
As you work through the numerous examples, you'll explore key topics like classification, numeric prediction, and clustering. Along the way, you'll be introduced to important established algorithms, such as Apriori, through which you identify association patterns in large datasets and Adaboost, a meta-algorithm that can increase the efficiency of many machine learning tasks.
Machine Learning這門科學範圍很大,不大可能有一本書能在這個主題面面俱到。初學者需要先了解機器學習的範圍,再比較淺顯的去知道背後的理論基礎,之後再儘可能挖掘每一種算法的形成與直觀意義。在我閱讀過的機器學習書籍中,這本書與O'Reilly的Data Science From Scratch比較...
評分理论没讲太明白,直接上算法,甚至还有公式缺失,代码不敢恭维 就像大家说的一样 先看看线性代数、概率论、统计学再来看看这书吧 我这10多年 php、java、c#、js通吃,本想python应该不难,竟然代码部分有东西看不懂了,不得不拿起本python的书对着看...
評分理论推导太弱,导致部分代码实现难以理解为什么是这样写,建议配合吴恩达讲义使用。 另外贝叶斯那段代码实现应该是错误的,作者在计算概率的时候把分母给弄错了,还有就是因为python版本问题,在python3上跑书上程序需要对程序进行一些改动。 附代码修改: def classifyNB(vec2...
評分讀瞭LR,ada boost,略讀瞭svm,psvm。數學渣子的福音,碼農最愛的實例。 雖然大傢都說寫的不好,不過入個門還是不錯。
评分一般般
评分看這書可以同時入門機器學習,python,mapreduce,作者可以幾個方麵都講清楚,真不容易
评分讀瞭LR,ada boost,略讀瞭svm,psvm。數學渣子的福音,碼農最愛的實例。 雖然大傢都說寫的不好,不過入個門還是不錯。
评分入門好書
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈圖書下載中心 版权所有