Optimization for Machine Learning 在线电子书 图书标签: 机器学习 Optimization 优化 MachineLearning 数学 计算机科学 最优化 计算机
发表于2024-11-22
Optimization for Machine Learning 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024
推荐
评分http://www.ppurl.com/2013/01/optimization-for-machine-learning.html
评分http://www.ppurl.com/2013/01/optimization-for-machine-learning.html
评分推荐
评分http://www.ppurl.com/2013/01/optimization-for-machine-learning.html
Suvrit Sra is a Research Scientist at the Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
Sebastian Nowozin is a Postdoctoral Researcher at Microsoft Research, Cambridge, UK.
Stephen J. Wright is Professor in the Computer Sciences Department at the University of Wisconsin, Madison.
The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields.Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.
评分
评分
评分
评分
Optimization for Machine Learning 在线电子书 pdf 下载 txt下载 epub 下载 mobi 下载 2024