The Data Science Handbook

The Data Science Handbook pdf epub mobi txt 电子书 下载 2025

From the Back Cover

A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is Principal Data Scientist at Maana, Inc. where he applies Big Data tools to solve industrial problems. He has a BS in Physics from Stanford University, an MS in Applied Mathematics from the University of Washington, and an MS in Computer Science from Carnegie Mellon University.

Read more

About the Author

FIELD CADY is Principal Data Scientist at Maana, Inc. where he applies Big Data tools to solve industrial problems. He has a BS in Physics from Stanford University, an MS in Applied Mathematics from the University of Washington, and an MS in Computer Science from Carnegie Mellon University.

Read more

出版者:Wiley
作者:Field Cady
出品人:
页数:416
译者:
出版时间:2017-2-28
价格:USD 55.71
装帧:Hardcover
isbn号码:9781119092940
丛书系列:
图书标签:
  • 数据科学 
  • 知乎 
  • 数据分析 
  • 实践者解答 
  • DataScience 
  •  
想要找书就要到 图书目录大全
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline.

Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features:

• Extensive sample code and tutorials using Python™ along with its technical libraries

• Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems

• Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity

• A wide variety of case studies from industry

• Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed

The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set.

FIELD CADY is Principal Data Scientist at Maana, Inc. where he applies Big Data tools to solve industrial problems. He has a BS in Physics from Stanford University, an MS in Applied Mathematics from the University of Washington, and an MS in Computer Science from Carnegie Mellon University.

具体描述

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.wenda123.org All Rights Reserved. 图书目录大全 版权所有