The Elements of Statistical Learning

The Elements of Statistical Learning pdf epub mobi txt 電子書 下載2025

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

出版者:Springer
作者:Trevor Hastie
出品人:
頁數:745
译者:
出版時間:2009-10-1
價格:GBP 62.99
裝幀:Hardcover
isbn號碼:9780387848570
叢書系列:Springer Series in Statistics
圖書標籤:
  • 機器學習 
  • 統計學習 
  • Statistics 
  • 統計 
  • 數據挖掘 
  • 統計學 
  • 數學 
  • Data-Mining 
  •  
想要找書就要到 圖書目錄大全
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for "wide" data (p bigger than n), including multiple testing and false discovery rates.

具體描述

讀後感

評分

英文原版的官方免费下载链接已经有人在书评中给出了 中文版的译者很可能没有基本的数学知识,而是用Google翻译完成了这部作品。 超平面的Normal equation (法线方程)翻译成了“平面上的标准方程”;而稍有高中髙维几何常识的人都知道,法线是正交与该超平面的方向,而绝不可...  

評分

统计学习的经典教材,数学难度适中,英文难度较低,看了其中有监督学习部分,无监督学习部分没怎么看,算法比较经典,但是也比较老。  

評分

評分

https://esl.hohoweiya.xyz/index.html ==========================================================================================================================================================  

評分

The methodology used in the books are fancy and attractive, yet in terms of rigorous proofs, sometimes the book skip steps and is difficult to follow. ~ Slightly sophisticated for undergraduate students, but in general is a very nice book.

用戶評價

评分

好感動啊。

评分

好感動啊。

评分

太統計瞭,過於insightful所以通篇概述少有細節。

评分

齣第二版瞭

评分

好感動啊。

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 qciss.net All Rights Reserved. 小哈圖書下載中心 版权所有