Introduction to Probability, 2nd Edition 在線電子書 圖書標籤: 數學 概率論 Probability 概率論與數理統計 概率 Mathematics 概率統計 概率導論
發表於2024-11-22
Introduction to Probability, 2nd Edition 在線電子書 pdf 下載 txt下載 epub 下載 mobi 下載 2024
懶得把實體書帶齣國,後來看的都是電子版,前5章做瞭全部星號習題和大概一半其他。星號都做因為經常是一些定理,其實一般練習經常更難……特彆是在前三章。
評分Best introduction to probability
評分MIT MOOC 配套教材!公開課質量實在太好!
評分快忘瞭,另外當時學的也不好
評分懶得把實體書帶齣國,後來看的都是電子版,前5章做瞭全部星號習題和大概一半其他。星號都做因為經常是一些定理,其實一般練習經常更難……特彆是在前三章。
The authors are Professors in the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology. They are members of the prestigious US National Academy of Engineering. They have written several widely used textbooks and research monographs, both individually and jointly.
An intuitive, yet precise introduction to probability theory, stochastic processes, and probabilistic models used in science, engineering, economics, and related fields. The 2nd edition is a substantial revision of the 1st edition, involving a reorganization of old material and the addition of new material. The length of the book has increased by about 25 percent. The main new feature of the 2nd edition is thorough introduction to Bayesian and classical statistics.
The book is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject, as well as the fundamental concepts and methods of statistical inference, both Bayesian and classical. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes.
The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
Written by two professors of the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, and members of the prestigious US National Academy of Engineering, the book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.
From a Review of the 1st Edition:
...it trains the intuition to acquire probabilistic feeling. This book explains every single concept it enunciates. This is its main strength, deep explanation, and not just examples that happen to explain. Bertsekas and Tsitsiklis leave nothing to chance. The probability to misinterpret a concept or not understand it is just... zero. Numerous examples, figures, and end-of-chapter problems strengthen the understanding. Also of invaluable help is the book's web site, where solutions to the problems can be found-as well as much more information pertaining to probability, and also more problem sets. --Vladimir Botchev, Analog Dialogue
Several other reviews can be found in the listing of the first edition of this book. Contents, preface, and more info at publisher's website (Athena Scientific, athenasc com)
此书讲解细致,语言不生涩。 最喜欢的是这本书能够对很多理论给出直觉的解释,而且还有很多很好玩锻炼思考的例子。 以前上大学时不懂的,只会记公式的东西,看过这本书后,恍然大明白。 这本书里面对连续随机变量讲解的很直观化,尤其适合这块没学懂的人。
評分第1章 样本空间和事件 全概率定理:先把样本空间分割成一组互不相容的事件,再计算条件概率的加权平均。 贝叶斯准则:计算B发生的情况下Ai发生的概率(B是结果,A是原因,算这个概率的目的是由结果推原因,它称为后验概率),则可以先计算所有的Ai发生的情况下B发生的概率之和...
評分第1章 样本空间和事件 全概率定理:先把样本空间分割成一组互不相容的事件,再计算条件概率的加权平均。 贝叶斯准则:计算B发生的情况下Ai发生的概率(B是结果,A是原因,算这个概率的目的是由结果推原因,它称为后验概率),则可以先计算所有的Ai发生的情况下B发生的概率之和...
評分算是……击沉敌舰?Bertsekas这本前4章讲得非常棒,尤其是各种图像、直观解释把我当时心中的设想都展现出来了,有一种和人聊天的自然、顺畅。第5章极限部分讲得有点儿浅了,这章的习题量也有点儿少。后4章,关于Bernoulli Perocess,Poisson Process,Markov Process,Bayes统...
評分第1章 样本空间和事件 全概率定理:先把样本空间分割成一组互不相容的事件,再计算条件概率的加权平均。 贝叶斯准则:计算B发生的情况下Ai发生的概率(B是结果,A是原因,算这个概率的目的是由结果推原因,它称为后验概率),则可以先计算所有的Ai发生的情况下B发生的概率之和...
Introduction to Probability, 2nd Edition 在線電子書 pdf 下載 txt下載 epub 下載 mobi 下載 2024